LNCC
MCTI

AI LNCC

The National Laboratory for Scientific Computing (LNCC), with its interdisciplinary character in scientific and technological research, brings together researchers with expertise in computer science, applied mathematics and computational modeling working on topics of high complexity that require creativity and technical capacity in its treatment. In addition, LNCC provides an infrastructure for high performance computing, with the objectives of advancing knowledge and meeting the demands of society and the Brazilian State.

Skills

  • Support for Computational Infrastructure with 24x7 support team, including the supercomputer.
  • Articulation and Coordination of SINAPAD, the Brazilian High Performance Processing Network.
  • Participation in large national projects.
  • Multidisciplinary postgraduate in Computational Modeling.
  • Business incubator on site.
  • Coordination of the National Institute of Science and Technology in Data Science (INCTCID)
  • Coordination of the National Institute of Science and Technology in Scientific ComputerAssisted Medicine (INCT-MACC) in the period 2009 and 2016. Currently, the INCT-MACC is in its second edition with coordination of the Heart Institute at USP (InCor/USP).

Research Areas

Standards for quantitative assessments by coronary computed tomography angiography (CCTA)
Standards for quantitative assessments by coronary computed tomography angiography (CCTA)

Authors: Nieman, K; García-García, HM; Hideo-Kajita, A; Collet, C; Dey, D; Pugliese, F; Weissman, G; Tijssen, JGP; Leipsic, J; Opolski, MP; Ferencik, M; Lu, MT; Williams, MC; Bruining, N; Blanco, PJ; Maurovich-Horvat, P; Achenbach, S

Implicancias de la inteligencia artificial en los métodos de imagen endovascular
Implicancias de la inteligencia artificial en los métodos de imagen endovascular

Authors: Garmendia, C; Gonzalo, N; Blanco, PJ; García-García, HM

Data-driven models for the prediction of coronary atherosclerotic plaque progression/regression
Data-driven models for the prediction of coronary atherosclerotic plaque progression/regression

Authors: Bulant, CA; Boroni, GA; Bass, R; Räber, L; Lemos, PA; García-García, HM; Blanco, PJ

New machine learning and physics-based scoring functions for drug discovery
New machine learning and physics-based scoring functions for drug discovery

Authors: Isabella A. Guedes, André M. S. Barreto, Diogo Marinho, Eduardo Krempser, Mélaine A. Kuenemann, Olivier Sperandio, Laurent E. Dardenne, Maria A. Miteva

Multi-and many-objective optimization: present and future in de novo drug design
Multi-and many-objective optimization: present and future in de novo drug design

Authors: Jaqueline S. Angelo, Isabella A. Guedes, Helio J. C. Barbosa, Laurent E. Dardenne

DockThor-VS: A Free Platform for Receptor-Ligand Virtual Screening
DockThor-VS: A Free Platform for Receptor-Ligand Virtual Screening

Authors: Isabella Alvim Guedes, Matheus Müller Pereira da Silva, Marcelo Galheigo, Eduardo Krempser, Camila Silva de Magalhães, Helio José Correa Barbosa, Laurent Emmanuel Dardenne

A Generative Evolutionary Many-Objective Framework: A Case Study in Antimicrobial Agent Design
A Generative Evolutionary Many-Objective Framework: A Case Study in Antimicrobial Agent Design

Authors: Matheus Muller Pereira Da Silva, Jaqueline Silva Angelo, Isabella Alvim Guedes, Laurent Emmanuel Dardenne

Development of a Machine Learning Framework to Support Efficient Scientific Gateways
Development of a Machine Learning Framework to Support Efficient Scientific Gateways

Authors: COELHO, M. ; FREIRE, G. ; Osthoff, C. ; CARNEIRO, ANDRÉ RAMOS ; GALHEIGO, MARCELO ; BOITO, FRANCIELI ZANON ; NAVAUX, PHILIPPE OA ; CARDOSO, D.

Parallel execution of an artificial neural network for data assimilation of the shallow-water 2D problem.
Parallel execution of an artificial neural network for data assimilation of the shallow-water 2D problem.

Authors: Campos Velho. H.F. ; SABATINI, S.B.M ; FURTADO, H.C.M. ; OSTHOFF, CARLA ; WELTER, M. E. S. ; CARVALHO, DIEGO ; CARDOSO, D. ; Souto, Roberto P. .

Desenvolvimento de um Framework de Aprendizado de Máquina no Apoio a Gateways Científicos Verdes, Inteligentes e Eficientes: BioinfoPortal como Caso de Estudo Brasileiro
Desenvolvimento de um Framework de Aprendizado de Máquina no Apoio a Gateways Científicos Verdes, Inteligentes e Eficientes: BioinfoPortal como Caso de Estudo Brasileiro

Authors: Coelho, Micaella ; FREIRE, GUILHERME ; Ocaña, Kary ; OSTHOFF, CARLA ; GALHEIGO, MARCELO ; CARNEIRO, ANDRÉ R. ; BOITO, FRANCIELI ; NAVAUX, PHILIPPE ; CARDOSO, DOUGLAS O. .

An Exploratory Study of Deep Learning for Predicting Computational Tasks Behavior in HPC Systems
An Exploratory Study of Deep Learning for Predicting Computational Tasks Behavior in HPC Systems

Authors: PORTO, ALEXANDRE H.L. ; Coelho, Micaella ; Ocaña, Kary ; OSTHOFF, CARLA ; BOITO, FRANCIELI ; CARDOSO, DOUGLAS O

Machine learning prediction models of coronary plaque progression after one-year of high-intensity rosuvastatin therapy from intravascular ultrasound images
Machine learning prediction models of coronary plaque progression after one-year of high-intensity rosuvastatin therapy from intravascular ultrasound images

Authors: García-García, HM; Bulant, CA; Bass, R; Boroni, G; Clausse, A; Lemos, PA; Blanco, PJ; Losdat, S; Räber, L.

Not Found Publication

Statistical Learning Using Neural Networks - A Guide for Statisticians and Data Scientists with Python
Statistical Learning Using Neural Networks - A Guide for Statisticians and Data Scientists with Python

Authors: Basilio de Braganca Pereira, Calyampudi Radhakrishna Rao, Fabio Borges de Oliveira

Project