LNCC
MCTI

AI LNCC

The National Laboratory for Scientific Computing (LNCC), with its interdisciplinary character in scientific and technological research, brings together researchers with expertise in computer science, applied mathematics and computational modeling working on topics of high complexity that require creativity and technical capacity in its treatment. In addition, LNCC provides an infrastructure for high performance computing, with the objectives of advancing knowledge and meeting the demands of society and the Brazilian State.

Skills

  • Support for Computational Infrastructure with 24x7 support team, including the supercomputer.
  • Articulation and Coordination of SINAPAD, the Brazilian High Performance Processing Network.
  • Participation in large national projects.
  • Multidisciplinary postgraduate in Computational Modeling.
  • Business incubator on site.
  • Coordination of the National Institute of Science and Technology in Data Science (INCTCID)
  • Coordination of the National Institute of Science and Technology in Scientific ComputerAssisted Medicine (INCT-MACC) in the period 2009 and 2016. Currently, the INCT-MACC is in its second edition with coordination of the Heart Institute at USP (InCor/USP).

Research Areas

Data Assimilation by Neural Network for Ocean Circulation: Parallel Implementation
Data Assimilation by Neural Network for Ocean Circulation: Parallel Implementation

Authors: Campos Velho, H. F., Furtado, H. C. M., Sambatti, S. B. M., Osthoff Ferreira de Barros, C. B., Welter, M. E. S., Souto, R. P., Carvalho, D. ., & Cardoso, D. O. (2022).

Multi-and many-objective optimization: present and future in de novo drug design
Multi-and many-objective optimization: present and future in de novo drug design

Authors: Jaqueline S. Angelo, Isabella A. Guedes, Helio J. C. Barbosa and Laurent E. Dardenne

The gene regulatory network of Staphylococcus aureus ST239-SCCmecIII strain Bmb9393 and assessment of genes associated with the biofilm in diverse backgrounds
The gene regulatory network of Staphylococcus aureus ST239-SCCmecIII strain Bmb9393 and assessment of genes associated with the biofilm in diverse backgrounds

Authors: Maiana de Oliveira Cerqueira e Costa, Ana Paula Barbosa do Nascimento, Yasmmin Cortes Martins, Marcelo Trindade dos Santos, Agnes Marie de Sá Figueiredo, Ernesto Perez-Rueda and Marisa Fabiana Nicolás

PPIntegrator: semantic integrative system for protein-protein interaction and application for host-pathogen datasets
PPIntegrator: semantic integrative system for protein-protein interaction and application for host-pathogen datasets

Authors: Martins YC, Ziviani A, Cerqueira E Costa MO, Cavalcanti MCR, Nicolás MF, de Vasconcelos ATR.

Inference of differentially expressed genes using generalized linear mixed models in a pairwise fashion
Inference of differentially expressed genes using generalized linear mixed models in a pairwise fashion

Authors: Douglas Terra Machado, Otávio José Bernardes Brustolini, Yasmmin Côrtes Martin, Marco Antonio Grivet Mattoso Maia and Ana Tereza Ribeiro de Vasconcelos

( m, n)-mer-a simple statistical feature for sequence classification
( m, n)-mer-a simple statistical feature for sequence classification

Authors: Amanda Araújo Serrão de Andrade , Marco Grivet , Otávio Brustolini, Ana Tereza Ribeiro Vasconcelos

Development of a Machine Learning Framework to Support Efficient Scientific Gateways
Development of a Machine Learning Framework to Support Efficient Scientific Gateways

Authors: COELHO, M. ; FREIRE, G. ; Osthoff, C. ; CARNEIRO, ANDRÉ RAMOS ; GALHEIGO, MARCELO ; BOITO, FRANCIELI ZANON ; NAVAUX, PHILIPPE OA ; CARDOSO, D.

Parallel execution of an artificial neural network for data assimilation of the shallow-water 2D problem.
Parallel execution of an artificial neural network for data assimilation of the shallow-water 2D problem.

Authors: Campos Velho. H.F. ; SABATINI, S.B.M ; FURTADO, H.C.M. ; OSTHOFF, CARLA ; WELTER, M. E. S. ; CARVALHO, DIEGO ; CARDOSO, D. ; Souto, Roberto P. .

Desenvolvimento de um Framework de Aprendizado de Máquina no Apoio a Gateways Científicos Verdes, Inteligentes e Eficientes: BioinfoPortal como Caso de Estudo Brasileiro
Desenvolvimento de um Framework de Aprendizado de Máquina no Apoio a Gateways Científicos Verdes, Inteligentes e Eficientes: BioinfoPortal como Caso de Estudo Brasileiro

Authors: Coelho, Micaella ; FREIRE, GUILHERME ; Ocaña, Kary ; OSTHOFF, CARLA ; GALHEIGO, MARCELO ; CARNEIRO, ANDRÉ R. ; BOITO, FRANCIELI ; NAVAUX, PHILIPPE ; CARDOSO, DOUGLAS O. .

An Exploratory Study of Deep Learning for Predicting Computational Tasks Behavior in HPC Systems
An Exploratory Study of Deep Learning for Predicting Computational Tasks Behavior in HPC Systems

Authors: PORTO, ALEXANDRE H.L. ; Coelho, Micaella ; Ocaña, Kary ; OSTHOFF, CARLA ; BOITO, FRANCIELI ; CARDOSO, DOUGLAS O

Machine learning prediction models of coronary plaque progression after one-year of high-intensity rosuvastatin therapy from intravascular ultrasound images
Machine learning prediction models of coronary plaque progression after one-year of high-intensity rosuvastatin therapy from intravascular ultrasound images

Authors: García-García, HM; Bulant, CA; Bass, R; Boroni, G; Clausse, A; Lemos, PA; Blanco, PJ; Losdat, S; Räber, L.

Otimização de dataflows BigData por meio de reuso de dados
Otimização de dataflows BigData por meio de reuso de dados

Authors: Gustavo Decarlo, Daniel de Oliveira, fabio Porto

Not Found Publication

Statistical Learning Using Neural Networks - A Guide for Statisticians and Data Scientists with Python
Statistical Learning Using Neural Networks - A Guide for Statisticians and Data Scientists with Python

Authors: Basilio de Braganca Pereira, Calyampudi Radhakrishna Rao, Fabio Borges de Oliveira

Project